lesavka/client/src/input/inputs.rs

186 lines
6.6 KiB
Rust

// client/src/input/inputs.rs
use anyhow::{bail, Context, Result};
use evdev::{Device, EventType, KeyCode, RelativeAxisCode};
use tokio::{sync::broadcast::Sender, time::{interval, Duration}};
use tracing::{debug, info, warn};
use lesavka_common::lesavka::{KeyboardReport, MouseReport};
use super::{keyboard::KeyboardAggregator, mouse::MouseAggregator};
use crate::layout::{Layout, apply as apply_layout};
pub struct InputAggregator {
kbd_tx: Sender<KeyboardReport>,
mou_tx: Sender<MouseReport>,
dev_mode: bool,
released: bool,
magic_active: bool,
keyboards: Vec<KeyboardAggregator>,
mice: Vec<MouseAggregator>,
}
impl InputAggregator {
pub fn new(dev_mode: bool,
kbd_tx: Sender<KeyboardReport>,
mou_tx: Sender<MouseReport>) -> Self {
Self { kbd_tx, mou_tx, dev_mode, released: false, magic_active: false,
keyboards: Vec::new(), mice: Vec::new()
}
}
/// Called once at startup: enumerates input devices,
/// classifies them, and constructs a aggregator struct per type.
pub fn init(&mut self) -> Result<()> {
let paths = std::fs::read_dir("/dev/input")
.context("Failed to read /dev/input")?;
let mut found_any = false;
for entry in paths {
let entry = entry?;
let path = entry.path();
// skip anything that isn't "event*"
if !path.file_name().map_or(false, |f| f.to_string_lossy().starts_with("event")) {
continue;
}
// ─── open the event node read-write *without* unsafe ──────────
let mut dev = match Device::open(&path) {
Ok(d) => d,
Err(e) => {
warn!("❌ open {}: {e}", path.display());
continue;
}
};
// non-blocking so fetch_events never stalls the whole loop
dev.set_nonblocking(true).with_context(|| format!("set_non_blocking {:?}", path))?;
match classify_device(&dev) {
DeviceKind::Keyboard => {
dev.grab().with_context(|| format!("grabbing keyboard {path:?}"))?;
info!("🤏🖱️ Grabbed keyboard {:?}", dev.name().unwrap_or("UNKNOWN"));
// pass dev_mode to aggregator
// let kbd_agg = KeyboardAggregator::new(dev, self.dev_mode);
let kbd_agg = KeyboardAggregator::new(dev, self.dev_mode, self.kbd_tx.clone());
self.keyboards.push(kbd_agg);
found_any = true;
continue;
}
DeviceKind::Mouse => {
dev.grab().with_context(|| format!("grabbing mouse {path:?}"))?;
info!("🤏⌨️ Grabbed mouse {:?}", dev.name().unwrap_or("UNKNOWN"));
// let mouse_agg = MouseAggregator::new(dev);
let mouse_agg = MouseAggregator::new(dev, self.dev_mode, self.mou_tx.clone());
self.mice.push(mouse_agg);
found_any = true;
continue;
}
DeviceKind::Other => {
debug!("Skipping non-kbd/mouse device: {:?}", dev.name().unwrap_or("UNKNOWN"));
continue;
}
}
}
if !found_any {
bail!("No suitable keyboard/mouse devices found or none grabbed.");
}
Ok(())
}
/// We spawn the sub-aggregators in a loop or using separate tasks.
/// (For a real system: you'd spawn a separate task for each aggregator.)
pub async fn run(&mut self) -> Result<()> {
// Example approach: poll each aggregator in a simple loop
let mut tick = interval(Duration::from_millis(10));
let mut current = Layout::SideBySide;
loop {
let magic_now = self.keyboards.iter().any(|k| k.magic_grab());
let magic_left = self.keyboards.iter().any(|k| k.magic_left());
let magic_right = self.keyboards.iter().any(|k| k.magic_right());
let mut want_kill = false;
for kbd in &mut self.keyboards {
kbd.process_events();
want_kill |= kbd.magic_kill();
}
if magic_now && !self.magic_active { self.toggle_grab(); }
if (magic_left || magic_right) && self.magic_active {
current = match current {
Layout::SideBySide => Layout::FullLeft,
Layout::FullLeft => Layout::FullRight,
Layout::FullRight => Layout::SideBySide,
};
apply_layout(current);
}
if want_kill {
warn!("🧙 magic chord - killing 🪄 AVADA KEDAVRA!!! 💥💀⚰️");
std::process::exit(0);
}
for mouse in &mut self.mice {
mouse.process_events();
}
self.magic_active = magic_now;
tick.tick().await;
}
}
fn toggle_grab(&mut self) {
if self.released {
tracing::info!("🧙 magic chord - restricting devices 🪄 IMPERIUS!!! 🎮🔒");
} else {
tracing::info!("🧙 magic chord - freeing devices 🪄 EXPELLIARMUS!!! 🔓🕊️");
}
for k in &mut self.keyboards { k.set_grab(self.released); k.set_send(self.released); }
for m in &mut self.mice { m.set_grab(self.released); m.set_send(self.released); }
self.released = !self.released;
}
}
/// The classification function
fn classify_device(dev: &Device) -> DeviceKind {
let evbits = dev.supported_events();
// Keyboard logic
if evbits.contains(EventType::KEY) {
if let Some(keys) = dev.supported_keys() {
if keys.contains(KeyCode::KEY_A) || keys.contains(KeyCode::KEY_ENTER) {
return DeviceKind::Keyboard;
}
}
}
// Mouse logic
if evbits.contains(EventType::RELATIVE) {
if let (Some(rel), Some(keys)) =
(dev.supported_relative_axes(), dev.supported_keys())
{
let has_xy = rel.contains(RelativeAxisCode::REL_X)
&& rel.contains(RelativeAxisCode::REL_Y);
let has_btn = keys.contains(KeyCode::BTN_LEFT)
|| keys.contains(KeyCode::BTN_RIGHT);
if has_xy && has_btn {
return DeviceKind::Mouse;
}
}
}
DeviceKind::Other
}
/// Internal enum for device classification
#[derive(Debug, Clone, Copy)]
enum DeviceKind {
Keyboard,
Mouse,
Other,
}