Compare commits
5 Commits
677e31ba2d
...
d8249bba37
| Author | SHA1 | Date | |
|---|---|---|---|
| d8249bba37 | |||
| 9827db8a49 | |||
| 71d2829d0f | |||
| 387eea1399 | |||
| a8e9bc53de |
@ -184,7 +184,7 @@ class AnswerEngine:
|
||||
normalized = str(normalize.get("normalized") or question).strip() or question
|
||||
keywords = normalize.get("keywords") or []
|
||||
_debug_log("normalize_parsed", {"normalized": normalized, "keywords": keywords})
|
||||
keyword_tokens = _extract_keywords(normalized, sub_questions=[], keywords=keywords)
|
||||
keyword_tokens = _extract_keywords(question, normalized, sub_questions=[], keywords=keywords)
|
||||
|
||||
if observer:
|
||||
observer("route", "routing")
|
||||
@ -250,7 +250,7 @@ class AnswerEngine:
|
||||
parts = _parse_json_list(decompose_raw)
|
||||
sub_questions = _select_subquestions(parts, normalized, plan.max_subquestions)
|
||||
_debug_log("decompose_parsed", {"sub_questions": sub_questions})
|
||||
keyword_tokens = _extract_keywords(normalized, sub_questions=sub_questions, keywords=keywords)
|
||||
keyword_tokens = _extract_keywords(question, normalized, sub_questions=sub_questions, keywords=keywords)
|
||||
|
||||
snapshot_context = ""
|
||||
if classify.get("needs_snapshot"):
|
||||
@ -260,7 +260,7 @@ class AnswerEngine:
|
||||
scored = await _score_chunks(call_llm, chunks, normalized, sub_questions, plan)
|
||||
selected = _select_chunks(chunks, scored, plan, keyword_tokens)
|
||||
key_facts = _key_fact_lines(summary_lines, keyword_tokens)
|
||||
metric_facts = [line for line in key_facts if re.search(r"\\d", line)]
|
||||
metric_facts = [line for line in key_facts if re.search(r"\d", line)]
|
||||
if self._settings.debug_pipeline:
|
||||
scored_preview = sorted(
|
||||
[{"id": c["id"], "score": scored.get(c["id"], 0.0), "summary": c["summary"]} for c in chunks],
|
||||
@ -405,15 +405,19 @@ class AnswerEngine:
|
||||
model=plan.model,
|
||||
tag="focus_fix",
|
||||
)
|
||||
if classify.get("question_type") in {"metric", "diagnostic"} and metric_facts and not re.search(r"\\d", reply):
|
||||
if classify.get("question_type") in {"metric", "diagnostic"} and metric_facts:
|
||||
best_line = None
|
||||
lowered = normalized.lower()
|
||||
lowered_keywords = [kw.lower() for kw in keyword_tokens if kw]
|
||||
for line in metric_facts:
|
||||
if any(token in line.lower() for token in lowered.split()):
|
||||
line_lower = line.lower()
|
||||
if any(kw in line_lower for kw in lowered_keywords):
|
||||
best_line = line
|
||||
break
|
||||
best_line = best_line or metric_facts[0]
|
||||
reply = f"From the latest snapshot: {best_line}."
|
||||
reply_numbers = set(re.findall(r"\d+(?:\.\d+)?", reply))
|
||||
fact_numbers = set(re.findall(r"\d+(?:\.\d+)?", " ".join(metric_facts)))
|
||||
if not reply_numbers or (fact_numbers and not (reply_numbers & fact_numbers)):
|
||||
reply = f"From the latest snapshot: {best_line}."
|
||||
|
||||
if plan.use_critic:
|
||||
if observer:
|
||||
@ -443,6 +447,9 @@ class AnswerEngine:
|
||||
if note:
|
||||
reply = f"{reply}\n\n{note}"
|
||||
|
||||
if classify.get("question_type") in {"metric", "diagnostic"} and metric_facts:
|
||||
reply = _metric_fact_guard(reply, metric_facts, keyword_tokens)
|
||||
|
||||
scores = await self._score_answer(normalized, reply, plan, call_llm)
|
||||
claims = await self._extract_claims(normalized, reply, summary, call_llm)
|
||||
except LLMLimitReached:
|
||||
@ -873,16 +880,45 @@ def _key_fact_lines(lines: list[str], keywords: list[str] | None, limit: int = 6
|
||||
lowered = [kw.lower() for kw in keywords if kw]
|
||||
if not lowered:
|
||||
return []
|
||||
focused = _focused_keywords(lowered)
|
||||
primary = focused or lowered
|
||||
matches: list[str] = []
|
||||
for line in lines:
|
||||
line_lower = line.lower()
|
||||
if any(kw in line_lower for kw in lowered):
|
||||
if any(kw in line_lower for kw in primary):
|
||||
matches.append(line)
|
||||
if len(matches) >= limit:
|
||||
break
|
||||
if len(matches) < limit and focused:
|
||||
for line in lines:
|
||||
if len(matches) >= limit:
|
||||
break
|
||||
if line in matches:
|
||||
continue
|
||||
line_lower = line.lower()
|
||||
if any(kw in line_lower for kw in lowered):
|
||||
matches.append(line)
|
||||
return matches
|
||||
|
||||
|
||||
def _metric_fact_guard(reply: str, metric_facts: list[str], keywords: list[str]) -> str:
|
||||
if not metric_facts:
|
||||
return reply
|
||||
best_line = None
|
||||
lowered_keywords = [kw.lower() for kw in keywords if kw]
|
||||
for line in metric_facts:
|
||||
line_lower = line.lower()
|
||||
if any(kw in line_lower for kw in lowered_keywords):
|
||||
best_line = line
|
||||
break
|
||||
best_line = best_line or metric_facts[0]
|
||||
reply_numbers = set(re.findall(r"\d+(?:\.\d+)?", reply))
|
||||
fact_numbers = set(re.findall(r"\d+(?:\.\d+)?", " ".join(metric_facts)))
|
||||
if not reply_numbers or (fact_numbers and not (reply_numbers & fact_numbers)):
|
||||
return f"From the latest snapshot: {best_line}."
|
||||
return reply
|
||||
|
||||
|
||||
def _lexicon_context(summary: dict[str, Any]) -> str:
|
||||
if not isinstance(summary, dict):
|
||||
return ""
|
||||
@ -987,7 +1023,12 @@ def _needs_focus_fix(question: str, reply: str, classify: dict[str, Any]) -> boo
|
||||
return any(marker in reply.lower() for marker in extra_markers)
|
||||
|
||||
|
||||
def _extract_keywords(normalized: str, sub_questions: list[str], keywords: list[Any] | None) -> list[str]:
|
||||
def _extract_keywords(
|
||||
raw_question: str,
|
||||
normalized: str,
|
||||
sub_questions: list[str],
|
||||
keywords: list[Any] | None,
|
||||
) -> list[str]:
|
||||
stopwords = {
|
||||
"the",
|
||||
"and",
|
||||
@ -1011,7 +1052,7 @@ def _extract_keywords(normalized: str, sub_questions: list[str], keywords: list[
|
||||
"now",
|
||||
}
|
||||
tokens: list[str] = []
|
||||
for source in [normalized, *sub_questions]:
|
||||
for source in [raw_question, normalized, *sub_questions]:
|
||||
for part in re.split(r"[^a-zA-Z0-9_-]+", source.lower()):
|
||||
if len(part) < 3 or part in stopwords:
|
||||
continue
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user